Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Pediatr Infect Dis J ; 43(5): 444-453, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38359342

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a rare but serious hyperinflammatory complication following infection with severe acute respiratory syndrome coronavirus 2. The mechanisms underpinning the pathophysiology of MIS-C are poorly understood. Moreover, clinically distinguishing MIS-C from other childhood infectious and inflammatory conditions, such as Kawasaki disease or severe bacterial and viral infections, is challenging due to overlapping clinical and laboratory features. We aimed to determine a set of plasma protein biomarkers that could discriminate MIS-C from those other diseases. METHODS: Seven candidate protein biomarkers for MIS-C were selected based on literature and from whole blood RNA sequencing data from patients with MIS-C and other diseases. Plasma concentrations of ARG1, CCL20, CD163, CORIN, CXCL9, PCSK9 and ADAMTS2 were quantified in MIS-C (n = 22), Kawasaki disease (n = 23), definite bacterial (n = 28) and viral (n = 27) disease and healthy controls (n = 8). Logistic regression models were used to determine the discriminatory ability of individual proteins and protein combinations to identify MIS-C and association with severity of illness. RESULTS: Plasma levels of CD163, CXCL9 and PCSK9 were significantly elevated in MIS-C with a combined area under the receiver operating characteristic curve of 85.7% (95% confidence interval: 76.6%-94.8%) for discriminating MIS-C from other childhood diseases. Lower ARG1 and CORIN plasma levels were significantly associated with severe MIS-C cases requiring inotropes, pediatric intensive care unit admission or with shock. CONCLUSION: Our findings demonstrate the feasibility of a host protein biomarker signature for MIS-C and may provide new insight into its pathophysiology.


Subject(s)
COVID-19/complications , Mucocutaneous Lymph Node Syndrome , Proprotein Convertase 9 , Humans , Child , Mucocutaneous Lymph Node Syndrome/diagnosis , Blood Proteins , Systemic Inflammatory Response Syndrome/diagnosis , Biomarkers
2.
Lancet Digit Health ; 5(11): e774-e785, 2023 11.
Article in English | MEDLINE | ID: mdl-37890901

ABSTRACT

BACKGROUND: Differentiating between self-resolving viral infections and bacterial infections in children who are febrile is a common challenge, causing difficulties in identifying which individuals require antibiotics. Studying the host response to infection can provide useful insights and can lead to the identification of biomarkers of infection with diagnostic potential. This study aimed to identify host protein biomarkers for future development into an accurate, rapid point-of-care test that can distinguish between bacterial and viral infections, by recruiting children presenting to health-care settings with fever or a history of fever in the previous 72 h. METHODS: In this multi-cohort machine learning study, patient data were taken from EUCLIDS, the Swiss Pediatric Sepsis study, the GENDRES study, and the PERFORM study, which were all based in Europe. We generated three high-dimensional proteomic datasets (SomaScan and two via liquid chromatography tandem mass spectrometry, referred to as MS-A and MS-B) using targeted and untargeted platforms (SomaScan and liquid chromatography mass spectrometry). Protein biomarkers were then shortlisted using differential abundance analysis, feature selection using forward selection-partial least squares (FS-PLS; 100 iterations), along with a literature search. Identified proteins were tested with Luminex and ELISA and iterative FS-PLS was done again (25 iterations) on the Luminex results alone, and the Luminex and ELISA results together. A sparse protein signature for distinguishing between bacterial and viral infections was identified from the selected proteins. The performance of this signature was finally tested using Luminex assays and by calculating disease risk scores. FINDINGS: 376 children provided serum or plasma samples for use in the discovery of protein biomarkers. 79 serum samples were collected for the generation of the SomaScan dataset, 147 plasma samples for the MS-A dataset, and 150 plasma samples for the MS-B dataset. Differential abundance analysis, and the first round of feature selection using FS-PLS identified 35 protein biomarker candidates, of which 13 had commercial ELISA or Luminex tests available. 16 proteins with ELISA or Luminex tests available were identified by literature review. Further evaluation via Luminex and ELISA and the second round of feature selection using FS-PLS revealed a six-protein signature: three of the included proteins are elevated in bacterial infections (SELE, NGAL, and IFN-γ), and three are elevated in viral infections (IL18, NCAM1, and LG3BP). Performance testing of the signature using Luminex assays revealed area under the receiver operating characteristic curve values between 89·4% and 93·6%. INTERPRETATION: This study has led to the identification of a protein signature that could be ultimately developed into a blood-based point-of-care diagnostic test for rapidly diagnosing bacterial and viral infections in febrile children. Such a test has the potential to greatly improve care of children who are febrile, ensuring that the correct individuals receive antibiotics. FUNDING: European Union's Horizon 2020 research and innovation programme, the European Union's Seventh Framework Programme (EUCLIDS), Imperial Biomedical Research Centre of the National Institute for Health Research, the Wellcome Trust and Medical Research Foundation, Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Grupos de Refeencia Competitiva, Swiss State Secretariat for Education, Research and Innovation.


Subject(s)
Bacterial Infections , Virus Diseases , Humans , Child , Proteomics , Bacterial Infections/diagnosis , Biomarkers/metabolism , Virus Diseases/diagnosis , Anti-Bacterial Agents
3.
Lancet Reg Health Eur ; 32: 100682, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37554664

ABSTRACT

Background: The PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice. Methods: Febrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed. Findings: Of 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively. Interpretation: Most febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics. Funding: EU Horizon 2020 grant 668303.

4.
Med ; 4(9): 635-654.e5, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37597512

ABSTRACT

BACKGROUND: Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. METHODS: A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a "cost" weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identified was further validated in a new RNA sequencing dataset comprising 411 febrile children. FINDINGS: We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort and benchmarked against existing dichotomous RNA signatures. CONCLUSIONS: Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. FUNDING: European Union's Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC.


Subject(s)
Benchmarking , Biomedical Research , Child , Humans , Diagnosis, Differential , Nucleotide Motifs , Fever/diagnosis , Fever/genetics , RNA
5.
Arch Dis Child ; 109(1): 58-66, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37640431

ABSTRACT

OBJECTIVE: To externally validate and update the Feverkids tool clinical prediction model for differentiating bacterial pneumonia and other serious bacterial infections (SBIs) from non-SBI causes of fever in immunocompromised children. DESIGN: International, multicentre, prospective observational study embedded in PErsonalised Risk assessment in Febrile illness to Optimise Real-life Management across the European Union (PERFORM). SETTING: Fifteen teaching hospitals in nine European countries. PARTICIPANTS: Febrile immunocompromised children aged 0-18 years. METHODS: The Feverkids clinical prediction model predicted the probability of bacterial pneumonia, other SBI or no SBI. Model discrimination, calibration and diagnostic performance at different risk thresholds were assessed. The model was then re-fitted and updated. RESULTS: Of 558 episodes, 21 had bacterial pneumonia, 104 other SBI and 433 no SBI. Discrimination was 0.83 (95% CI 0.71 to 0.90) for bacterial pneumonia, with moderate calibration and 0.67 (0.61 to 0.72) for other SBIs, with poor calibration. After model re-fitting, discrimination improved to 0.88 (0.79 to 0.96) and 0.71 (0.65 to 0.76) and calibration improved. Predicted risk <1% ruled out bacterial pneumonia with sensitivity 0.95 (0.86 to 1.00) and negative likelihood ratio (LR) 0.09 (0.00 to 0.32). Predicted risk >10% ruled in bacterial pneumonia with specificity 0.91 (0.88 to 0.94) and positive LR 6.51 (3.71 to 10.3). Predicted risk <10% ruled out other SBIs with sensitivity 0.92 (0.87 to 0.97) and negative LR 0.32 (0.13 to 0.57). Predicted risk >30% ruled in other SBIs with specificity 0.89 (0.86 to 0.92) and positive LR 2.86 (1.91 to 4.25). CONCLUSION: Discrimination and calibration were good for bacterial pneumonia but poorer for other SBIs. The rule-out thresholds have the potential to reduce unnecessary investigations and antibiotics in this high-risk group.


Subject(s)
Bacterial Infections , Communicable Diseases , Pneumonia, Bacterial , Child , Humans , Infant , Models, Statistical , Prognosis , Fever/etiology , Fever/microbiology , Bacterial Infections/diagnosis , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/complications , Emergency Service, Hospital
6.
J Pediatric Infect Dis Soc ; 12(6): 322-331, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37255317

ABSTRACT

BACKGROUND: To identify a diagnostic blood transcriptomic signature that distinguishes multisystem inflammatory syndrome in children (MIS-C) from Kawasaki disease (KD), bacterial infections, and viral infections. METHODS: Children presenting with MIS-C to participating hospitals in the United Kingdom and the European Union between April 2020 and April 2021 were prospectively recruited. Whole-blood RNA Sequencing was performed, contrasting the transcriptomes of children with MIS-C (n = 38) to those from children with KD (n = 136), definite bacterial (DB; n = 188) and viral infections (DV; n = 138). Genes significantly differentially expressed (SDE) between MIS-C and comparator groups were identified. Feature selection was used to identify genes that optimally distinguish MIS-C from other diseases, which were subsequently translated into RT-qPCR assays and evaluated in an independent validation set comprising MIS-C (n = 37), KD (n = 19), DB (n = 56), DV (n = 43), and COVID-19 (n = 39). RESULTS: In the discovery set, 5696 genes were SDE between MIS-C and combined comparator disease groups. Five genes were identified as potential MIS-C diagnostic biomarkers (HSPBAP1, VPS37C, TGFB1, MX2, and TRBV11-2), achieving an AUC of 96.8% (95% CI: 94.6%-98.9%) in the discovery set, and were translated into RT-qPCR assays. The RT-qPCR 5-gene signature achieved an AUC of 93.2% (95% CI: 88.3%-97.7%) in the independent validation set when distinguishing MIS-C from KD, DB, and DV. CONCLUSIONS: MIS-C can be distinguished from KD, DB, and DV groups using a 5-gene blood RNA expression signature. The small number of genes in the signature and good performance in both discovery and validation sets should enable the development of a diagnostic test for MIS-C.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Child , Humans , COVID-19/diagnosis , COVID-19/genetics , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/genetics , Hospitals , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/genetics , COVID-19 Testing
7.
Nature ; 617(7961): 564-573, 2023 May.
Article in English | MEDLINE | ID: mdl-36996872

ABSTRACT

Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.


Subject(s)
Adenovirus Infections, Human , Genomics , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/virology , B-Lymphocytes/immunology , Gene Expression Profiling , Hepatitis/epidemiology , Hepatitis/immunology , Hepatitis/virology , Immunohistochemistry , Liver/immunology , Liver/virology , Proteomics , T-Lymphocytes/immunology
9.
Eur J Pediatr ; 182(2): 543-554, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36243780

ABSTRACT

To assess and describe the aetiology and management of febrile illness in children with primary or acquired immunodeficiency at high risk of serious bacterial infection, as seen in emergency departments in tertiary hospitals. Prospective data on demographics, presenting features, investigations, microbiology, management, and outcome of patients within the 'Biomarker Validation in HR patients' database in PERFORM, were analysed. Immunocompromised children (< 18 years old) presented to fifteen European hospitals in nine countries, and one Gambian hospital, with fever or suspected infection and clinical indication for blood investigations. Febrile episodes were assigned clinical phenotypes using the validated PERFORM algorithm. Logistic regression was used to assess the effect size of predictive features of proven/presumed bacterial or viral infection. A total of 599 episodes in 482 children were analysed. Seventy-eight episodes (13.0%) were definite bacterial, 67 episodes probable bacterial (11.2%), and 29 bacterial syndrome (4.8%). Fifty-five were definite viral (9.2%), 49 probable viral (8.2%), and 23 viral syndrome (3.8%). One hundred ninety were unknown bacterial or viral infections (31.7%), and 108 had inflammatory or other non-infectious causes of fever (18.1%). Predictive features of proven/presumed bacterial infection were ill appearance (OR 3.1 (95% CI 2.1-4.6)) and HIV (OR 10.4 (95% CI 2.0-54.4)). Ill appearance reduced the odds of having a proven/presumed viral infection (OR 0.5 (95% CI 0.3-0.9)). A total of 82.1% had new empirical antibiotics started on admission (N = 492); 94.3% proven/presumed bacterial (N = 164), 66.1% proven/presumed viral (N = 84), and 93.2% unknown bacterial or viral infections (N = 177). Mortality was 1.9% (N = 11) and 87.1% made full recovery (N = 522).   Conclusion: The aetiology of febrile illness in immunocompromised children is diverse. In one-third of cases, no cause for the fever will be identified. Justification for standard intravenous antibiotic treatment for every febrile immunocompromised child is debatable, yet effective. Better clinical decision-making tools and new biomarkers are needed for this population. What is Known: • Immunosuppressed children are at high risk for morbidity and mortality of serious bacterial and viral infection, but often present with fever as only clinical symptom. • Current diagnostic measures in this group are not specific to rule out bacterial infection, and positivity rates of microbiological cultures are low. What is New: • Febrile illness and infectious complications remain a significant cause of mortality and morbidity in HR children, yet management is effective. • The aetiology of febrile illness in immunocompromised children is diverse, and development of pathways for early discharge or cessation of intravenous antibiotics is debatable, and requires better clinical decision-making tools and biomarkers.


Subject(s)
Bacterial Infections , Virus Diseases , Child , Humans , Prospective Studies , Bacterial Infections/complications , Bacterial Infections/diagnosis , Bacterial Infections/epidemiology , Fever/diagnosis , Fever/etiology , Fever/drug therapy , Anti-Bacterial Agents/therapeutic use , Virus Diseases/complications , Virus Diseases/diagnosis , Virus Diseases/drug therapy , Biomarkers
10.
BMC Infect Dis ; 22(1): 785, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36229786

ABSTRACT

Respiratory syncytial virus (RSV) and influenza viruses are important global causes of morbidity and mortality. We evaluated the diagnostic accuracy of the Luminex NxTAG respiratory pathogen panels (RPPs)™ (index) against other RPPs (comparator) for detection of RSV and influenza viruses. Studies comparing human clinical respiratory samples tested with the index and at least one comparator test were included. A random-effect latent class meta-analysis was performed to assess the specificity and sensitivity of the index test for RSV and influenza. Risk of bias was assessed using the QUADAS-2 tool and certainty of evidence using GRADE. Ten studies were included. For RSV, predicted sensitivity was 99% (95% credible interval [CrI] 96-100%) and specificity 100% (95% CrI 98-100%). For influenza A and B, predicted sensitivity was 97% (95% CrI 89-100) and 98% (95% CrI 88-100) respectively; specificity 100% (95% CrI 99-100) and 100% (95% CrI 99-100), respectively. Evidence was low certainty. Although index sensitivity and specificity were excellent, comparators' performance varied. Further research with clear patient recruitment strategies could ascertain performance across different populations.Protocol Registration: Prospero CRD42021272062.


Subject(s)
Influenza A virus , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Influenza B virus , Influenza, Human/diagnosis , Respiratory Syncytial Virus Infections/diagnosis , Sensitivity and Specificity
11.
Health Sci Rep ; 5(5): e811, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36177402

ABSTRACT

Background and Aims: In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. Rapid global spread led to the coronavirus disease 2019 (Covid-19) pandemic. Accurate detection of SARS-CoV-2 has become a vitally important tool in controlling the spread of the virus. Lateral flow devices (LFDs) offer the potential advantage of speed and on-site testing. The sensitivity of these devices compared to reverse transcription-polymerase chain reaction (RT-PCR) has been questioned. Methods: We compared the sensitivity of the Innova LFD, used widely in the United Kingdom, with our rapid RT-PCR method using stored positive samples. Samples with a range of viral loads (original Ct values 18.9-36.5) were tested. Results: The Innova LFD was found to be 6000-10,000 times less sensitive than RT-PCR for SARS-CoV-2 detection. Overall, the LFD detected 46.2% of the positives detected by RT-PCR, with 50% of these observed to be weak LFD positives. At lower viral loads, such as 10,000-100,000 RNA copies/ml, the LFD detected 22.2% of positives. In addition, two strong positives (3 and 1.5 million RNA copies/ml) were not detected by the LFD. Conclusion: The argument for use of LFD kits is that they detect infectious virus and hence contagious individuals. However, there is a lack of conclusive evidence supporting this claim. The Innova LFD has been subject to a Class I recall by the US Food and Drug Administration, but is still approved and widely used in the United Kingdom.

12.
Am J Hum Genet ; 109(9): 1680-1691, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36007525

ABSTRACT

Neisseria meningitidis protects itself from complement-mediated killing by binding complement factor H (FH). Previous studies associated susceptibility to meningococcal disease (MD) with variation in CFH, but the causal variants and underlying mechanism remained unknown. Here we attempted to define the association more accurately by sequencing the CFH-CFHR locus and imputing missing genotypes in previously obtained GWAS datasets of MD-affected individuals of European ancestry and matched controls. We identified a CFHR3 SNP that provides protection from MD (rs75703017, p value = 1.1 × 10-16) by decreasing the concentration of FH in the blood (p value = 1.4 × 10-11). We subsequently used dual-luciferase studies and CRISPR gene editing to establish that deletion of rs75703017 increased FH expression in hepatocyte by preventing promotor inhibition. Our data suggest that reduced concentrations of FH in the blood confer protection from MD; with reduced access to FH, N. meningitidis is less able to shield itself from complement-mediated killing.


Subject(s)
Complement Factor H , Meningococcal Infections , Blood Proteins/genetics , Complement Factor H/genetics , Complement System Proteins/genetics , Genetic Predisposition to Disease , Genotype , Humans , Meningococcal Infections/genetics
13.
Front Immunol ; 13: 876776, 2022.
Article in English | MEDLINE | ID: mdl-35720329

ABSTRACT

Neisseria meningitidis, the causative agent of meningococcal disease (MD), evades complement-mediated clearance upon infection by 'hijacking' the human complement regulator factor H (FH). The FH protein family also comprises the homologous FH-related (FHR) proteins, hypothesized to act as antagonists of FH, and FHR-3 has recently been implicated to play a major role in MD susceptibility. Here, we show that the circulating levels of all FH family proteins, not only FH and FHR-3, are equally decreased during the acute illness. We did neither observe specific consumption of FH or FHR-3 by N. meningitidis, nor of any of the other FH family proteins, suggesting that the globally reduced levels are due to systemic processes including dilution by fluid administration upon admission and vascular leakage. MD severity associated predominantly with a loss of FH rather than FHRs. Additionally, low FH levels associated with renal failure, suggesting insufficient protection of host tissue by the active protection by the FH protein family, which is reminiscent of reduced FH activity in hemolytic uremic syndrome. Retaining higher levels of FH may thus limit tissue injury during MD.


Subject(s)
Hemolytic-Uremic Syndrome , Meningococcal Infections , Neisseria meningitidis , Complement Factor H , Complement System Proteins , Humans
14.
BMC Pediatr ; 22(1): 166, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361147

ABSTRACT

BACKGROUND: Respiratory virus infection is common in early childhood, and children may be symptomatic or symptom-free. Little is known regarding the association between symptomatic/asymptomatic infection and particular clinical factors such as breastfeeding as well as the consequences of such infection. METHOD: We followed an unselected cohort of term neonates to two years of age (220 infants at recruitment, 159 who remained in the study to 24 months), taking oral swabs at birth and oropharyngeal swabs at intervals subsequently (at 1.5, 6, 9, 12, 18 and 24 months and in a subset at 3 and 4.5 months) while recording extensive metadata including the presence of respiratory symptoms and breastfeeding status. After 2 years medical notes from the general practitioner were inspected to ascertain whether doctor-diagnosed wheeze had occurred by this timepoint. Multiplex PCR was used to detect a range of respiratory viruses: influenza (A&B), parainfluenza (1-4), bocavirus, human metapneumovirus, rhinovirus, coronavirus (OC43, 229E, NL63, HKU1), adenovirus, respiratory syncytial virus (RSV), and polyomavirus (KI, WU). Logistic regression and generalised estimating equations were used to identify associations between clinical factors and virus detection. RESULTS: Overall respiratory viral incidence increased with age. Rhinovirus was the virus most frequently detected. The detection of a respiratory virus was positively associated with respiratory symptoms, male sex, season, childcare and living with another child. We did not observe breastfeeding (whether assessed as the number of completed months of breastfeeding or current feed status) to be associated with the detection of a respiratory virus. There was no association between early viral infection and doctor-diagnosed wheeze by age 2 years. CONCLUSION: Asymptomatic and symptomatic viral infection is common in the first 2 years of life with rhinovirus infection being the most common. Whilst there was no association between early respiratory viral infection and doctor-diagnosed wheeze, we have not ruled out an association of early viral infections with later asthma, and long-term follow-up of the cohort continues.


Subject(s)
Coronavirus , Respiratory Tract Infections , Virus Diseases , Child , Child, Preschool , Cohort Studies , Humans , Infant , Infant, Newborn , Life Style , Male , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Virus Diseases/diagnosis
15.
Crit Care Explor ; 3(11): e0569, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765980

ABSTRACT

IMPORTANCE: A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 is hypothesized to play a role in the pathogenesis of invasive infection, but studies in sepsis are lacking. OBJECTIVES: To study A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 protein level in pediatric sepsis and to study the association with outcome. DESIGN: Data from two prospective cohort studies. SETTING AND PARTICIPANTS: Cohort 1 is from a single-center study involving children admitted to PICU with meningococcal sepsis (samples obtained at three time points). Cohort 2 includes patients from a multicenter study involving children admitted to the hospital with invasive bacterial infections of differing etiologies (samples obtained within 48 hr after hospital admission). MAIN OUTCOMES AND MEASURES: Primary outcome measure was mortality. Secondary outcome measures were PICU-free days at day 28 and hospital length of stay. RESULTS: In cohort 1 (n = 59), nonsurvivors more frequently had A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 levels above the detection limit than survivors at admission to PICU (8/11 [73%] and 6/23 [26%], respectively; p = 0.02) and at t = 24 hours (2/3 [67%] and 3/37 [8%], respectively; p = 0.04). In cohort 2 (n = 240), A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 levels in patients within 48 hours after hospital admission were more frequently above the detection limit than in healthy controls (110/240 [46%] and 14/64 [22%], respectively; p = 0.001). Nonsurvivors more often had detectable A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 levels than survivors (16/21 [76%] and 94/219 [43%], respectively; p = 0.003), which was mostly attributable to patients with Neisseria meningitidis. CONCLUSIONS AND RELEVANCE: In children with bacterial infection, detection of A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 within 48 hours after hospital admission is associated with death, particularly in meningococcal sepsis. Future studies should confirm the prognostic value of A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 and should study pathophysiologic mechanisms.

16.
Front Pediatr ; 9: 688272, 2021.
Article in English | MEDLINE | ID: mdl-34395340

ABSTRACT

Background: The limited diagnostic accuracy of biomarkers in children at risk of a serious bacterial infection (SBI) might be due to the imperfect reference standard of SBI. We aimed to evaluate the diagnostic performance of a new classification algorithm for biomarker discovery in children at risk of SBI. Methods: We used data from five previously published, prospective observational biomarker discovery studies, which included patients aged 0- <16 years: the Alder Hey emergency department (n = 1,120), Alder Hey pediatric intensive care unit (n = 355), Erasmus emergency department (n = 1,993), Maasstad emergency department (n = 714) and St. Mary's hospital (n = 200) cohorts. Biomarkers including procalcitonin (PCT) (4 cohorts), neutrophil gelatinase-associated lipocalin-2 (NGAL) (3 cohorts) and resistin (2 cohorts) were compared for their ability to classify patients according to current standards (dichotomous classification of SBI vs. non-SBI), vs. a proposed PERFORM classification algorithm that assign patients to one of eleven categories. These categories were based on clinical phenotype, test outcomes and C-reactive protein level and accounted for the uncertainty of final diagnosis in many febrile children. The success of the biomarkers was measured by the Area under the receiver operating Curves (AUCs) when they were used individually or in combination. Results: Using the new PERFORM classification system, patients with clinically confident bacterial diagnosis ("definite bacterial" category) had significantly higher levels of PCT, NGAL and resistin compared with those with a clinically confident viral diagnosis ("definite viral" category). Patients with diagnostic uncertainty had biomarker concentrations that varied across the spectrum. AUCs were higher for classification of "definite bacterial" vs. "definite viral" following the PERFORM algorithm than using the "SBI" vs. "non-SBI" classification; summary AUC for PCT was 0.77 (95% CI 0.72-0.82) vs. 0.70 (95% CI 0.65-0.75); for NGAL this was 0.80 (95% CI 0.69-0.91) vs. 0.70 (95% CI 0.58-0.81); for resistin this was 0.68 (95% CI 0.61-0.75) vs. 0.64 (0.58-0.69) The three biomarkers combined had summary AUC of 0.83 (0.77-0.89) for "definite bacterial" vs. "definite viral" infections and 0.71 (0.67-0.74) for "SBI" vs. "non-SBI." Conclusion: Biomarkers of bacterial infection were strongly associated with the diagnostic categories using the PERFORM classification system in five independent cohorts. Our proposed algorithm provides a novel framework for phenotyping children with suspected or confirmed infection for future biomarker studies.

17.
PLoS One ; 15(12): e0243266, 2020.
Article in English | MEDLINE | ID: mdl-33284857

ABSTRACT

Shortage of reagents and consumables required for the extraction and molecular detection of SARS-CoV-2 RNA in respiratory samples has led many laboratories to investigate alternative approaches for sample preparation. Many groups recently presented results using heat processing method of respiratory samples prior to RT-qPCR as an economical method enabling an extremely fast streamlining of the processes at virtually no cost. Here, we present our results using this method and highlight some major pitfalls that diagnostics laboratories should be aware of before proceeding with this methodology. We first investigated various treatments using different temperatures, incubation times and sample volumes to optimise the heat treatment conditions. Although the initial data confirmed results published elsewhere, further investigations revealed unexpected inhibitory properties of some commonly used universal transport media (UTMs) on some commercially available RT-qPCR mixes, leading to a risk of reporting false-negative results. This emphasises the critical importance of a thorough validation process to determine the most suitable reagents to use depending on the sample types to be tested. In conclusion, a heat processing method is effective with very consistent Ct values and a sensitivity of 96.2% when compared to a conventional RNA extraction method. It is also critical to include an internal control to check each sample for potential inhibition.


Subject(s)
COVID-19 Testing/methods , SARS-CoV-2/metabolism , Specimen Handling/methods , COVID-19/genetics , COVID-19/metabolism , Clinical Laboratory Techniques/methods , Coronavirus Infections/epidemiology , Humans , Indicators and Reagents , Pandemics , Pneumonia, Viral/epidemiology , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity , Temperature
18.
Front Pediatr ; 8: 355, 2020.
Article in English | MEDLINE | ID: mdl-32775314

ABSTRACT

Background: Kawasaki disease (KD) is a vasculitis of early childhood mimicking several infectious diseases. Differentiation between KD and infectious diseases is essential as KD's most important complication-the development of coronary artery aneurysms (CAA)-can be largely avoided by timely treatment with intravenous immunoglobulins (IVIG). Currently, KD diagnosis is only based on clinical criteria. The aim of this study was to evaluate whether routine C-reactive protein (CRP) and additional inflammatory parameters myeloid-related protein 8/14 (MRP8/14 or S100A8/9) and human neutrophil-derived elastase (HNE) could distinguish KD from infectious diseases. Methods and Results: The cross-sectional study included KD patients and children with proven infections as well as febrile controls. Patients were recruited between July 2006 and December 2018 in Europe and USA. MRP8/14, CRP, and HNE were assessed for their discriminatory ability by multiple logistic regression analysis with backward selection and receiver operator characteristic (ROC) curves. In the discovery cohort, the combination of MRP8/14+CRP discriminated KD patients (n = 48) from patients with infection (n = 105), with area under the ROC curve (AUC) of 0.88. The HNE values did not improve discrimination. The first validation cohort confirmed the predictive value of MRP8/14+CRP to discriminate acute KD patients (n = 26) from those with infections (n = 150), with an AUC of 0.78. The second validation cohort of acute KD patients (n = 25) and febrile controls (n = 50) showed an AUC of 0.72, which improved to 0.84 when HNE was included. Conclusion: When used in combination, the plasma markers MRP8/14, CRP, and HNE may assist in the discrimination of KD from both proven and suspected infection.

19.
Sci Rep ; 9(1): 17714, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31776453

ABSTRACT

Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics.


Subject(s)
Bacterial Infections/blood , Cholesterol/blood , Fever of Unknown Origin/blood , Inositol Phosphates/blood , Lysophosphatidylcholines/blood , Sphingomyelins/blood , Virus Diseases/blood , Adolescent , Bacterial Infections/diagnosis , Biomarkers/blood , Child , Child, Preschool , Diagnosis, Differential , Female , Fever of Unknown Origin/diagnosis , Humans , Infant , Male , Virus Diseases/diagnosis
20.
EBioMedicine ; 46: 486-498, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31353293

ABSTRACT

BACKGROUND: A critical window in infancy has been proposed, during which the microbiota may affect subsequent health. The longitudinal development of the oropharyngeal microbiota is under-studied and may be associated with early-life wheeze. We aimed to investigate the temporal association of the development of the oropharyngeal microbiota with early-life wheeze. METHODS: A population-based birth cohort based in London, UK was followed for 24 months. We collected oropharyngeal swabs at six time-points. Microbiota was determined using sequencing of the V3-V5 region of the 16S rRNA-encoding gene. Medical records were reviewed for the outcome of doctor diagnosed wheeze. We used a time-varying model to investigate the temporal association between the development of microbiota and doctor-diagnosed wheeze. FINDINGS: 159 participants completed the study to 24 months and for 98 there was complete sequencing data at all timepoints and outcome data. Of these, 26 had doctor-diagnosed wheeze. We observed significant increase in the abundance of Neisseria between 9 and 24 months in children who developed wheeze (p = 0∙003), while in those without wheezing there was a significant increment in the abundance of Granulicatella (p = 0∙012) between 9 and 12 months, and of Prevotella (p = 0∙018) after 18 months. INTERPRETATION: A temporal association between the respiratory commensal Granulicatella and also Prevotella with wheeze (negative), and between Neisseria and wheeze (positive) was identified in infants prior to one year of age. This adds to evidence for the proposed role of the microbiota in the development of wheeze. FUND: Research funding from the Winnicott Foundation, Meningitis Now and Micropathology Ltd.


Subject(s)
Microbiota , Oropharynx/microbiology , Respiratory Sounds/etiology , Age Factors , Biodiversity , Cohort Studies , Female , Humans , Male , Metagenome , Metagenomics/methods , Population Surveillance , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...